Classwork

Exercises

Derek scored 30 points in the basketball game he played, and not once did he go to the free throw line. That means
that Derek scored two-point shots and three-point shots. List as many combinations of two- and three-pointers as
you can that would total 30 points.

= 30+0 = 30+0

Number of Two-Pointers	Number of Three-Pointers
	10
3	8
6	6
9	7
12	2
15	O

2. Derek tells you that the number of two-point shots that he made is five more than the number of three-point shots How many combinations can you come up with that fit this scenario? (Don't worry about the total aum

*	\forall
Number of Two-Pointers	Number of Three-Pointers
5	0
6	1
17+5=22	. 17
107	102
8	3
10	5
9	4

Write an equation to

Write an equation to describe the data X = X - S X - Y = S 3. Which pair of numbers from your table in Exercise 2 would show Derek's actual score of 30 points?

(9,4) -> 9 +Wb - pointrs \$4,3-points?

- 4. Efrain and Fernie are on a road trip. Each of them drives at a constant speed Frain is a safe driver and travel 45 miles per hour for the entire trip. Fernie is not such a safe driver. He drives 40 miles per hour throughout the trip. ernie and Efrain left from the same location, but Efrain left at 8:00 a.m., and Fernie left at 11:00 a.m. Assuming they take the same route, will Fernie ever catch up to Efrain? If so, approximately when?
 - Write the linear equation that represents frain's constant speed. Make sure to include in your equation the

extra time that Efrain was able to travel.

Let Fernie's + ime = × Efrain's time = X+3

b. Write the linear equation that represents Fernie's constant speed.

Write the system of linear

Sketch the graphs of the

180

- Will Fernie ever catch up to Efrain? If so, approximately whan?
- At approximately what point do the graphs of the lines intersect?

- 5. Jessica and Karl run at constant speeds. Jessica can run 3 miles in 24 minutes. Karl can run 2 miles in 14 minutes. They decide to race each other. As soon as the race begins, Karl trips and takes 2 minutes to recover.
 - a. Write the linear equation that represents Jessica's constant speed. Make sure to include in your equation the extra time that Jessica was able to run.
 - b. Write the linear equation that represents Karl's constant speed.
 - c. Write the system of linear equations that represents this situation.
 - d. Sketch the graphs of the two linear equations.

- e. Use the graph to answer the questions below.
 - i. If Jessica and Karl raced for 3 miles, who would win? Explain.
 - ii. At approximately what point would Jessica and Karl be tied? Explain.