Classwork

Opening Exercise

Emily tells you that she scored 32 points in a basketball game. Write down all the possible ways she could have scored 32 with only two- and three-point baskets. Use the table below to organize your work.

Number of Two-Pointers	Number of Three-Pointers	
16	Q	
ı	1)	
4	8	>
7	6	70
(0)	4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
13	2	

Let y be the number of two-pointers and y be the number of three-pointers that Emily scored. Write an equation to represent the situation.

Exploratory Challenge/Exercises

1. Find five solutions for the linear equation x + y = 3, and plot the solutions as points on a coordinate plane.

x	Linear Equation: $x + y = 3$	y
2	2+1=3	(
3	3+0=3	0
	1+5 = 3	2
0	0+3=3	3
-3	-3+6=3	6

2. Find five solutions for the linear equation 2x - y = 10, and plot the solutions as points on a coordinate plane.

x	Linear Equation: $2x - y = 10$	у
6	2(6)-2=10	2
	2(0) - (-10) = 11)	-10
5	2(5)-0=10	0
4	2(4)-(-2)= 10	-2
7	2(7) _ 4 =	4

3. Find five solutions for the linear equation x + 5y = 21, and plot the solutions as points on a coordinate plane.

x	Line of Equition:	у

c. Find five solutions to the linear equation $\frac{2}{5}x + y = 11$, and plot the solutions as points on a coordinate plane.

Are there specific numbers that would make your computational work easier? Explain.

x	Linear Equation: $\frac{2}{5}x + y = 11$	у
0	3(0)+11=11	11
5	2(5)+9=	9
10	2(10)+7=11	7
15	2 (35) + 5=11	Ŋ
	•	

- 5. At the store, you see that you can buy a bag of candy for \$2 and a drink for \$1. Assume you have a total of \$35 to spend. You are feeling generous and want to buy some snacks for you and your friends.
 - a. Write an equation in standard form to represent the number of bags of candy, x, and the number of drinks, y, that you can buy with \$35.
 - b. Find five solutions to the linear equation from part (a), and plot the solutions as points on a coordinate plane.

	Linear Equation:	
x		у

Untitled.notebook February 04, 2016